This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is a function from the objects of C to homomorphisms from F ( x ) to G ( x ) . (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | ||
| natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| natixp.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| Assertion | natixp | ⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | |
| 3 | natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | natixp.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 7 | 1 | natrcl | ⊢ ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 10 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 12 | 8 | simprd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 13 | df-br | ⊢ ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
| 15 | 1 3 5 4 6 11 14 | isnat | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
| 16 | 2 15 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |