This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is a function from the objects of C to homomorphisms from F ( x ) to G ( x ) . (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | |- N = ( C Nat D ) |
|
| natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
||
| natixp.b | |- B = ( Base ` C ) |
||
| natixp.j | |- J = ( Hom ` D ) |
||
| Assertion | natixp | |- ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | |- N = ( C Nat D ) |
|
| 2 | natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
|
| 3 | natixp.b | |- B = ( Base ` C ) |
|
| 4 | natixp.j | |- J = ( Hom ` D ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 7 | 1 | natrcl | |- ( A e. ( <. F , G >. N <. K , L >. ) -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
| 8 | 2 7 | syl | |- ( ph -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
| 9 | 8 | simpld | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 10 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 11 | 9 10 | sylibr | |- ( ph -> F ( C Func D ) G ) |
| 12 | 8 | simprd | |- ( ph -> <. K , L >. e. ( C Func D ) ) |
| 13 | df-br | |- ( K ( C Func D ) L <-> <. K , L >. e. ( C Func D ) ) |
|
| 14 | 12 13 | sylibr | |- ( ph -> K ( C Func D ) L ) |
| 15 | 1 3 5 4 6 11 14 | isnat | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. z e. ( x ( Hom ` C ) y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( K ` y ) ) ( ( x G y ) ` z ) ) = ( ( ( x L y ) ` z ) ( <. ( F ` x ) , ( K ` x ) >. ( comp ` D ) ( K ` y ) ) ( A ` x ) ) ) ) ) |
| 16 | 2 15 | mpbid | |- ( ph -> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. z e. ( x ( Hom ` C ) y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( K ` y ) ) ( ( x G y ) ` z ) ) = ( ( ( x L y ) ` z ) ( <. ( F ` x ) , ( K ` x ) >. ( comp ` D ) ( K ` y ) ) ( A ` x ) ) ) ) |
| 17 | 16 | simpld | |- ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |