This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of when an expression involving alternative denials associates. Remark: alternative denial is commutative, see nancom . (Contributed by Richard Penner, 29-Feb-2020) (Proof shortened by Wolf Lammen, 23-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanass | ⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 | ⊢ ( ( 𝜑 ↔ 𝜒 ) → ( 𝜒 ↔ 𝜑 ) ) | |
| 2 | nanbi2 | ⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( 𝜓 ⊼ 𝜑 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) ) | |
| 3 | 1 2 | nanbi12d | ⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 4 | nannan | ⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) ) | |
| 5 | simpr | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜒 ) | |
| 6 | 5 | imim2i | ⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
| 7 | 4 6 | sylbi | ⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
| 8 | nannan | ⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜒 → ( 𝜓 ∧ 𝜑 ) ) ) | |
| 9 | simpr | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜑 ) | |
| 10 | 9 | imim2i | ⊢ ( ( 𝜒 → ( 𝜓 ∧ 𝜑 ) ) → ( 𝜒 → 𝜑 ) ) |
| 11 | 8 10 | sylbi | ⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( 𝜒 → 𝜑 ) ) |
| 12 | 7 11 | impbid21d | ⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) ) |
| 13 | nanan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ⊼ 𝜒 ) ) ↔ ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) | |
| 14 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝜓 ⊼ 𝜒 ) ) → 𝜑 ) | |
| 15 | 13 14 | sylbir | ⊢ ( ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → 𝜑 ) |
| 16 | nanan | ⊢ ( ( 𝜒 ∧ ( 𝜓 ⊼ 𝜑 ) ) ↔ ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ) | |
| 17 | simpl | ⊢ ( ( 𝜒 ∧ ( 𝜓 ⊼ 𝜑 ) ) → 𝜒 ) | |
| 18 | 16 17 | sylbir | ⊢ ( ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → 𝜒 ) |
| 19 | pm5.1im | ⊢ ( 𝜑 → ( 𝜒 → ( 𝜑 ↔ 𝜒 ) ) ) | |
| 20 | 15 18 19 | syl2imc | ⊢ ( ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) ) |
| 21 | 12 20 | bija | ⊢ ( ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) → ( 𝜑 ↔ 𝜒 ) ) |
| 22 | 3 21 | impbii | ⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 23 | nancom | ⊢ ( ( 𝜓 ⊼ 𝜑 ) ↔ ( 𝜑 ⊼ 𝜓 ) ) | |
| 24 | 23 | nanbi2i | ⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜒 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) |
| 25 | nancom | ⊢ ( ( 𝜒 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ) | |
| 26 | 24 25 | bitri | ⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ) |
| 27 | 26 | bibi1i | ⊢ ( ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 28 | 22 27 | bitri | ⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |