This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja , is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im and pm5.21im ). (Contributed by Wolf Lammen, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bija.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| bija.2 | ⊢ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) | ||
| Assertion | bija | ⊢ ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bija.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | bija.2 | ⊢ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) | |
| 3 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 4 | 3 1 | syli | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜒 ) ) |
| 5 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 6 | 5 | con3d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) |
| 7 | 6 2 | syli | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ¬ 𝜓 → 𝜒 ) ) |
| 8 | 4 7 | pm2.61d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) |