This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of when an expression involving alternative denials associates. Remark: alternative denial is commutative, see nancom . (Contributed by Richard Penner, 29-Feb-2020) (Proof shortened by Wolf Lammen, 23-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanass | |- ( ( ph <-> ch ) <-> ( ( ( ph -/\ ps ) -/\ ch ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 | |- ( ( ph <-> ch ) -> ( ch <-> ph ) ) |
|
| 2 | nanbi2 | |- ( ( ph <-> ch ) -> ( ( ps -/\ ph ) <-> ( ps -/\ ch ) ) ) |
|
| 3 | 1 2 | nanbi12d | |- ( ( ph <-> ch ) -> ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |
| 4 | nannan | |- ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) |
|
| 5 | simpr | |- ( ( ps /\ ch ) -> ch ) |
|
| 6 | 5 | imim2i | |- ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) ) |
| 7 | 4 6 | sylbi | |- ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph -> ch ) ) |
| 8 | nannan | |- ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ch -> ( ps /\ ph ) ) ) |
|
| 9 | simpr | |- ( ( ps /\ ph ) -> ph ) |
|
| 10 | 9 | imim2i | |- ( ( ch -> ( ps /\ ph ) ) -> ( ch -> ph ) ) |
| 11 | 8 10 | sylbi | |- ( ( ch -/\ ( ps -/\ ph ) ) -> ( ch -> ph ) ) |
| 12 | 7 11 | impbid21d | |- ( ( ch -/\ ( ps -/\ ph ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph <-> ch ) ) ) |
| 13 | nanan | |- ( ( ph /\ ( ps -/\ ch ) ) <-> -. ( ph -/\ ( ps -/\ ch ) ) ) |
|
| 14 | simpl | |- ( ( ph /\ ( ps -/\ ch ) ) -> ph ) |
|
| 15 | 13 14 | sylbir | |- ( -. ( ph -/\ ( ps -/\ ch ) ) -> ph ) |
| 16 | nanan | |- ( ( ch /\ ( ps -/\ ph ) ) <-> -. ( ch -/\ ( ps -/\ ph ) ) ) |
|
| 17 | simpl | |- ( ( ch /\ ( ps -/\ ph ) ) -> ch ) |
|
| 18 | 16 17 | sylbir | |- ( -. ( ch -/\ ( ps -/\ ph ) ) -> ch ) |
| 19 | pm5.1im | |- ( ph -> ( ch -> ( ph <-> ch ) ) ) |
|
| 20 | 15 18 19 | syl2imc | |- ( -. ( ch -/\ ( ps -/\ ph ) ) -> ( -. ( ph -/\ ( ps -/\ ch ) ) -> ( ph <-> ch ) ) ) |
| 21 | 12 20 | bija | |- ( ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) -> ( ph <-> ch ) ) |
| 22 | 3 21 | impbii | |- ( ( ph <-> ch ) <-> ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |
| 23 | nancom | |- ( ( ps -/\ ph ) <-> ( ph -/\ ps ) ) |
|
| 24 | 23 | nanbi2i | |- ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ch -/\ ( ph -/\ ps ) ) ) |
| 25 | nancom | |- ( ( ch -/\ ( ph -/\ ps ) ) <-> ( ( ph -/\ ps ) -/\ ch ) ) |
|
| 26 | 24 25 | bitri | |- ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ( ph -/\ ps ) -/\ ch ) ) |
| 27 | 26 | bibi1i | |- ( ( ( ch -/\ ( ps -/\ ph ) ) <-> ( ph -/\ ( ps -/\ ch ) ) ) <-> ( ( ( ph -/\ ps ) -/\ ch ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |
| 28 | 22 27 | bitri | |- ( ( ph <-> ch ) <-> ( ( ( ph -/\ ps ) -/\ ch ) <-> ( ph -/\ ( ps -/\ ch ) ) ) ) |