This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The X i -th coefficient of the term X i is 1 . (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | |- V = ( I mVar R ) |
|
| mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| mvrfval.z | |- .0. = ( 0g ` R ) |
||
| mvrfval.o | |- .1. = ( 1r ` R ) |
||
| mvrfval.i | |- ( ph -> I e. W ) |
||
| mvrfval.r | |- ( ph -> R e. Y ) |
||
| mvrval.x | |- ( ph -> X e. I ) |
||
| Assertion | mvrid | |- ( ph -> ( ( V ` X ) ` ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | |- V = ( I mVar R ) |
|
| 2 | mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 3 | mvrfval.z | |- .0. = ( 0g ` R ) |
|
| 4 | mvrfval.o | |- .1. = ( 1r ` R ) |
|
| 5 | mvrfval.i | |- ( ph -> I e. W ) |
|
| 6 | mvrfval.r | |- ( ph -> R e. Y ) |
|
| 7 | mvrval.x | |- ( ph -> X e. I ) |
|
| 8 | 1nn0 | |- 1 e. NN0 |
|
| 9 | 2 | snifpsrbag | |- ( ( I e. W /\ 1 e. NN0 ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. D ) |
| 10 | 5 8 9 | sylancl | |- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. D ) |
| 11 | 1 2 3 4 5 6 7 10 | mvrval2 | |- ( ph -> ( ( V ` X ) ` ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = if ( ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) |
| 12 | eqid | |- ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) |
|
| 13 | 12 | iftruei | |- if ( ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) = .1. |
| 14 | 11 13 | eqtrdi | |- ( ph -> ( ( V ` X ) ` ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = .1. ) |