This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the generating elements of the power series algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mvr | ⊢ mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmvr | ⊢ mVar | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | 1 | cv | ⊢ 𝑖 |
| 6 | vf | ⊢ 𝑓 | |
| 7 | vh | ⊢ ℎ | |
| 8 | cn0 | ⊢ ℕ0 | |
| 9 | cmap | ⊢ ↑m | |
| 10 | 8 5 9 | co | ⊢ ( ℕ0 ↑m 𝑖 ) |
| 11 | 7 | cv | ⊢ ℎ |
| 12 | 11 | ccnv | ⊢ ◡ ℎ |
| 13 | cn | ⊢ ℕ | |
| 14 | 12 13 | cima | ⊢ ( ◡ ℎ “ ℕ ) |
| 15 | cfn | ⊢ Fin | |
| 16 | 14 15 | wcel | ⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 17 | 16 7 10 | crab | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 18 | 6 | cv | ⊢ 𝑓 |
| 19 | vy | ⊢ 𝑦 | |
| 20 | 19 | cv | ⊢ 𝑦 |
| 21 | 4 | cv | ⊢ 𝑥 |
| 22 | 20 21 | wceq | ⊢ 𝑦 = 𝑥 |
| 23 | c1 | ⊢ 1 | |
| 24 | cc0 | ⊢ 0 | |
| 25 | 22 23 24 | cif | ⊢ if ( 𝑦 = 𝑥 , 1 , 0 ) |
| 26 | 19 5 25 | cmpt | ⊢ ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) |
| 27 | 18 26 | wceq | ⊢ 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) |
| 28 | cur | ⊢ 1r | |
| 29 | 3 | cv | ⊢ 𝑟 |
| 30 | 29 28 | cfv | ⊢ ( 1r ‘ 𝑟 ) |
| 31 | c0g | ⊢ 0g | |
| 32 | 29 31 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 33 | 27 30 32 | cif | ⊢ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) |
| 34 | 6 17 33 | cmpt | ⊢ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) |
| 35 | 4 5 34 | cmpt | ⊢ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) |
| 36 | 1 3 2 2 35 | cmpo | ⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
| 37 | 0 36 | wceq | ⊢ mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |