This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two sums. (Contributed by NM, 14-Jan-2006) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 2 | adddi | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) + ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) + ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) ) |
| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) + ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) ) |
| 5 | adddir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) ) | |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) ) |
| 7 | 6 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) ) |
| 8 | adddir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · 𝐷 ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) | |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐷 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · 𝐷 ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) |
| 10 | 9 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · 𝐷 ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) |
| 11 | 7 10 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) + ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) ) |
| 12 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) | |
| 13 | 12 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 14 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) | |
| 15 | 14 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) | |
| 17 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 · 𝐷 ) ∈ ℂ ) | |
| 18 | addcl | ⊢ ( ( ( 𝐴 · 𝐷 ) ∈ ℂ ∧ ( 𝐵 · 𝐷 ) ∈ ℂ ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ ) | |
| 19 | 16 17 18 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 20 | 19 | anandirs | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐷 ∈ ℂ ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 21 | 20 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 22 | 13 15 21 | add32d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) + ( 𝐵 · 𝐶 ) ) ) |
| 23 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 · 𝐷 ) = ( 𝐷 · 𝐵 ) ) | |
| 24 | 23 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐷 ) = ( 𝐷 · 𝐵 ) ) |
| 25 | 24 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) + ( 𝐵 · 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) + ( 𝐷 · 𝐵 ) ) ) |
| 26 | 16 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 27 | 17 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐷 ) ∈ ℂ ) |
| 28 | 13 26 27 | addassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) + ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) ) |
| 29 | mulcl | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐷 · 𝐵 ) ∈ ℂ ) | |
| 30 | 29 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐷 · 𝐵 ) ∈ ℂ ) |
| 31 | 30 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐷 · 𝐵 ) ∈ ℂ ) |
| 32 | 13 26 31 | add32d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) + ( 𝐷 · 𝐵 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( 𝐴 · 𝐷 ) ) ) |
| 33 | 25 28 32 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( 𝐴 · 𝐷 ) ) ) |
| 34 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 35 | 34 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 36 | 33 35 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) + ( 𝐵 · 𝐶 ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( 𝐴 · 𝐷 ) ) + ( 𝐶 · 𝐵 ) ) ) |
| 37 | addcl | ⊢ ( ( ( 𝐴 · 𝐶 ) ∈ ℂ ∧ ( 𝐷 · 𝐵 ) ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) | |
| 38 | 12 30 37 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) |
| 39 | 38 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) ∈ ℂ ) |
| 40 | mulcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) | |
| 41 | 40 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 42 | 41 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 43 | 39 26 42 | addassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( 𝐴 · 𝐷 ) ) + ( 𝐶 · 𝐵 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| 44 | 22 36 43 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |
| 45 | 4 11 44 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) |