This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmabl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ghmabl.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | ||
| ghmabl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ghmabl.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | ||
| ghmabl.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | ||
| ghmabl.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| ghmfghm.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| Assertion | ghmfghm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ghmabl.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | |
| 3 | ghmabl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ghmabl.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | |
| 5 | ghmabl.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 6 | ghmabl.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 7 | ghmfghm.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 8 | 5 1 2 3 4 6 7 | ghmgrp | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 9 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 11 | 5 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | 1 2 3 4 7 8 10 11 | isghmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |