This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcan1g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝐶 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 3 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 5 | 2 4 | subeq0ad | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ↔ ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝐶 ) ) ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 7 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) | |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 9 | 6 8 | mul0ord | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 − 𝐶 ) ) = 0 ↔ ( 𝐴 = 0 ∨ ( 𝐵 − 𝐶 ) = 0 ) ) ) |
| 10 | subdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 − 𝐶 ) ) = 0 ↔ ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ) ) |
| 12 | subeq0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) = 0 ↔ 𝐵 = 𝐶 ) ) | |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) = 0 ↔ 𝐵 = 𝐶 ) ) |
| 14 | 13 | orbi2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 − 𝐶 ) = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |
| 15 | 9 11 14 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |
| 16 | 5 15 | bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝐶 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |