This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcan2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐶 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 3 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ) ) |
| 6 | mulcan1g | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ ( 𝐶 = 0 ∨ 𝐴 = 𝐵 ) ) ) | |
| 7 | 6 | 3coml | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ ( 𝐶 = 0 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 | orcom | ⊢ ( ( 𝐶 = 0 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐶 = 0 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐶 = 0 ) ) ) |
| 10 | 5 9 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐶 = 0 ) ) ) |