This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcan1g | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) = ( A x. C ) <-> ( A = 0 \/ B = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) |
| 3 | mulcl | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
|
| 4 | 3 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
| 5 | 2 4 | subeq0ad | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A x. B ) = ( A x. C ) ) ) |
| 6 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 7 | subcl | |- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
|
| 8 | 7 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 9 | 6 8 | mul0ord | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( A = 0 \/ ( B - C ) = 0 ) ) ) |
| 10 | subdi | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) ) |
|
| 11 | 10 | eqeq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( ( A x. B ) - ( A x. C ) ) = 0 ) ) |
| 12 | subeq0 | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) |
|
| 13 | 12 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) |
| 14 | 13 | orbi2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A = 0 \/ ( B - C ) = 0 ) <-> ( A = 0 \/ B = C ) ) ) |
| 15 | 9 11 14 | 3bitr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A = 0 \/ B = C ) ) ) |
| 16 | 5 15 | bitr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) = ( A x. C ) <-> ( A = 0 \/ B = C ) ) ) |