This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial with factor. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulbinom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) = ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 · 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | binom2 | ⊢ ( ( ( 𝐶 · 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) = ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) = ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 7 | mulass | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) · 𝐵 ) = ( 𝐶 · ( 𝐴 · 𝐵 ) ) ) | |
| 8 | 7 | 3coml | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) · 𝐵 ) = ( 𝐶 · ( 𝐴 · 𝐵 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) = ( 2 · ( 𝐶 · ( 𝐴 · 𝐵 ) ) ) ) |
| 10 | 2cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 2 ∈ ℂ ) | |
| 11 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 12 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 14 | 10 11 13 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) = ( 2 · ( 𝐶 · ( 𝐴 · 𝐵 ) ) ) ) |
| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) = ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) ) = ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 𝐶 · 𝐴 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) = ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 18 | 6 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) = ( ( ( ( 𝐶 · 𝐴 ) ↑ 2 ) + ( ( 2 · 𝐶 ) · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |