This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 2 | 1 | oveq2i | ⊢ ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) |
| 3 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 5 | expp1 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) |
| 7 | 2 6 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) |
| 8 | sqcl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ( 𝐴 + 𝐵 ) ↑ 2 ) ∈ ℂ ) | |
| 9 | 3 8 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 10 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 12 | 9 10 11 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) ) ) |
| 13 | binom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) | |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐴 ) ) |
| 15 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 16 | 10 15 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 17 | 2cn | ⊢ 2 ∈ ℂ | |
| 18 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 19 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) | |
| 20 | 17 18 19 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 21 | 16 20 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) ∈ ℂ ) |
| 22 | sqcl | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) ∈ ℂ ) | |
| 23 | 11 22 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 24 | 21 23 10 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) + ( ( 𝐵 ↑ 2 ) · 𝐴 ) ) ) |
| 25 | 16 20 10 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) ) |
| 26 | 1 | oveq2i | ⊢ ( 𝐴 ↑ 3 ) = ( 𝐴 ↑ ( 2 + 1 ) ) |
| 27 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 𝐴 ↑ ( 2 + 1 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) | |
| 28 | 10 4 27 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ ( 2 + 1 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
| 29 | 26 28 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 3 ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
| 30 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 31 | 10 30 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐴 ) · 𝐵 ) ) |
| 33 | 10 10 11 | mul32d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐴 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
| 34 | 32 33 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) ) |
| 36 | 2cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℂ ) | |
| 37 | 36 18 10 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) ) |
| 38 | 35 37 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) |
| 39 | 29 38 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) ) |
| 40 | 25 39 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) = ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 41 | 23 10 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) · 𝐴 ) = ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 42 | 40 41 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) + ( ( 𝐵 ↑ 2 ) · 𝐴 ) ) = ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) |
| 43 | 14 24 42 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) = ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) |
| 44 | 13 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐵 ) ) |
| 45 | 21 23 11 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐵 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) ) |
| 46 | sqval | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) | |
| 47 | 11 46 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 48 | 47 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) = ( 𝐴 · ( 𝐵 · 𝐵 ) ) ) |
| 49 | 10 11 11 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐵 ) = ( 𝐴 · ( 𝐵 · 𝐵 ) ) ) |
| 50 | 48 49 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) ) |
| 52 | 36 18 11 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) ) |
| 53 | 51 52 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) |
| 54 | 53 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) ) |
| 55 | 16 20 11 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) ) |
| 56 | 54 55 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) ) |
| 57 | 1 | oveq2i | ⊢ ( 𝐵 ↑ 3 ) = ( 𝐵 ↑ ( 2 + 1 ) ) |
| 58 | expp1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) | |
| 59 | 11 4 58 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 60 | 57 59 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 3 ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 61 | 56 60 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) ) |
| 62 | 16 11 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) |
| 63 | 10 23 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 64 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) | |
| 65 | 17 63 64 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 66 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 67 | expcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) | |
| 68 | 11 66 67 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
| 69 | 62 65 68 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 70 | 61 69 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 71 | 44 45 70 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 72 | 43 71 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 73 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) | |
| 74 | 10 66 73 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 75 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ∈ ℂ ) | |
| 76 | 17 62 75 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ∈ ℂ ) |
| 77 | 74 76 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ∈ ℂ ) |
| 78 | 65 68 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 79 | 77 63 62 78 | add4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 80 | 12 72 79 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 81 | 74 76 62 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 3 ) + ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 82 | 1 | oveq1i | ⊢ ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 + 1 ) · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) |
| 83 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 84 | 36 83 62 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 + 1 ) · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 85 | 82 84 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 86 | 62 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) |
| 88 | 85 87 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) |
| 89 | 88 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( 𝐴 ↑ 3 ) + ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 90 | 81 89 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 91 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 92 | 91 | oveq1i | ⊢ ( ( 1 + 2 ) · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 93 | 83 36 63 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 2 ) · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 94 | 92 93 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 95 | 63 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 96 | 95 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 97 | 94 96 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 98 | 97 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) ) |
| 99 | 63 65 68 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 100 | 98 99 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) = ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) |
| 101 | 90 100 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 102 | 7 80 101 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |