This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, the closure operator is said to have theexchange property if, for all elements y and z of the base set and subsets S of the base set such that z is in the closure of ( S u. { y } ) but not in the closure of S , y is in the closure of ( S u. { z } ) (Definition 3.1.9 in FaureFrolicher p. 57 to 58.) This theorem allows to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexd.1 | |- ( ph -> X e. V ) |
|
| mreexd.2 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
||
| mreexd.3 | |- ( ph -> S C_ X ) |
||
| mreexd.4 | |- ( ph -> Y e. X ) |
||
| mreexd.5 | |- ( ph -> Z e. ( N ` ( S u. { Y } ) ) ) |
||
| mreexd.6 | |- ( ph -> -. Z e. ( N ` S ) ) |
||
| Assertion | mreexd | |- ( ph -> Y e. ( N ` ( S u. { Z } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexd.1 | |- ( ph -> X e. V ) |
|
| 2 | mreexd.2 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
|
| 3 | mreexd.3 | |- ( ph -> S C_ X ) |
|
| 4 | mreexd.4 | |- ( ph -> Y e. X ) |
|
| 5 | mreexd.5 | |- ( ph -> Z e. ( N ` ( S u. { Y } ) ) ) |
|
| 6 | mreexd.6 | |- ( ph -> -. Z e. ( N ` S ) ) |
|
| 7 | 1 3 | sselpwd | |- ( ph -> S e. ~P X ) |
| 8 | 4 | adantr | |- ( ( ph /\ s = S ) -> Y e. X ) |
| 9 | 5 | ad2antrr | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> Z e. ( N ` ( S u. { Y } ) ) ) |
| 10 | simplr | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> s = S ) |
|
| 11 | simpr | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> y = Y ) |
|
| 12 | 11 | sneqd | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> { y } = { Y } ) |
| 13 | 10 12 | uneq12d | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> ( s u. { y } ) = ( S u. { Y } ) ) |
| 14 | 13 | fveq2d | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> ( N ` ( s u. { y } ) ) = ( N ` ( S u. { Y } ) ) ) |
| 15 | 9 14 | eleqtrrd | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> Z e. ( N ` ( s u. { y } ) ) ) |
| 16 | 6 | ad2antrr | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> -. Z e. ( N ` S ) ) |
| 17 | 10 | fveq2d | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> ( N ` s ) = ( N ` S ) ) |
| 18 | 16 17 | neleqtrrd | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> -. Z e. ( N ` s ) ) |
| 19 | 15 18 | eldifd | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> Z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) ) |
| 20 | simplr | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> y = Y ) |
|
| 21 | simpllr | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> s = S ) |
|
| 22 | simpr | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> z = Z ) |
|
| 23 | 22 | sneqd | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> { z } = { Z } ) |
| 24 | 21 23 | uneq12d | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> ( s u. { z } ) = ( S u. { Z } ) ) |
| 25 | 24 | fveq2d | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> ( N ` ( s u. { z } ) ) = ( N ` ( S u. { Z } ) ) ) |
| 26 | 20 25 | eleq12d | |- ( ( ( ( ph /\ s = S ) /\ y = Y ) /\ z = Z ) -> ( y e. ( N ` ( s u. { z } ) ) <-> Y e. ( N ` ( S u. { Z } ) ) ) ) |
| 27 | 19 26 | rspcdv | |- ( ( ( ph /\ s = S ) /\ y = Y ) -> ( A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) -> Y e. ( N ` ( S u. { Z } ) ) ) ) |
| 28 | 8 27 | rspcimdv | |- ( ( ph /\ s = S ) -> ( A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) -> Y e. ( N ` ( S u. { Z } ) ) ) ) |
| 29 | 7 28 | rspcimdv | |- ( ph -> ( A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) -> Y e. ( N ` ( S u. { Z } ) ) ) ) |
| 30 | 2 29 | mpd | |- ( ph -> Y e. ( N ` ( S u. { Z } ) ) ) |