This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∪ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) } | |
| 2 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } | |
| 3 | df-mpt | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } | |
| 4 | 2 3 | uneq12i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∪ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } ) |
| 5 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝑦 = 𝐶 ) ) |
| 7 | andir | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝑦 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) } |
| 10 | unopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) } | |
| 11 | 9 10 | eqtr4i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) } = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } ) |
| 12 | 4 11 | eqtr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∪ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 = 𝐶 ) } |
| 13 | 1 12 | eqtr4i | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∪ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |