This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptexgf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | mptexgf | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexgf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 3 | dmmpt | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
| 5 | tru | ⊢ ⊤ | |
| 6 | 5 | 2a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ V → ⊤ ) ) |
| 7 | 6 | ss2rabi | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ { 𝑥 ∈ 𝐴 ∣ ⊤ } |
| 8 | 1 | rabtru | ⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |
| 9 | 7 8 | sseqtri | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ 𝐴 |
| 10 | 4 9 | eqsstri | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
| 11 | ssexg | ⊢ ( ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 12 | 10 11 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 13 | funex | ⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 14 | 2 12 13 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |