This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015) (Revised by Thierry Arnoux, 17-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptexgf.a | |- F/_ x A |
|
| Assertion | mptexgf | |- ( A e. V -> ( x e. A |-> B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexgf.a | |- F/_ x A |
|
| 2 | funmpt | |- Fun ( x e. A |-> B ) |
|
| 3 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 4 | 3 | dmmpt | |- dom ( x e. A |-> B ) = { x e. A | B e. _V } |
| 5 | tru | |- T. |
|
| 6 | 5 | 2a1i | |- ( x e. A -> ( B e. _V -> T. ) ) |
| 7 | 6 | ss2rabi | |- { x e. A | B e. _V } C_ { x e. A | T. } |
| 8 | 1 | rabtru | |- { x e. A | T. } = A |
| 9 | 7 8 | sseqtri | |- { x e. A | B e. _V } C_ A |
| 10 | 4 9 | eqsstri | |- dom ( x e. A |-> B ) C_ A |
| 11 | ssexg | |- ( ( dom ( x e. A |-> B ) C_ A /\ A e. V ) -> dom ( x e. A |-> B ) e. _V ) |
|
| 12 | 10 11 | mpan | |- ( A e. V -> dom ( x e. A |-> B ) e. _V ) |
| 13 | funex | |- ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. _V ) -> ( x e. A |-> B ) e. _V ) |
|
| 14 | 2 12 13 | sylancr | |- ( A e. V -> ( x e. A |-> B ) e. _V ) |