This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpteq12da.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| mpteq12da.2 | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) | ||
| mpteq12da.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 ) | ||
| Assertion | mpteq12da | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12da.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | mpteq12da.2 | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) | |
| 3 | mpteq12da.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 5 | 3 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐷 ) ) |
| 6 | 5 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 7 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) |
| 8 | 7 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 9 | 6 8 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 10 | 1 4 9 | opabbid | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } ) |
| 11 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 12 | df-mpt | ⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } | |
| 13 | 10 11 12 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |