This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpteq12da.1 | |- F/ x ph |
|
| mpteq12da.2 | |- ( ph -> A = C ) |
||
| mpteq12da.3 | |- ( ( ph /\ x e. A ) -> B = D ) |
||
| Assertion | mpteq12da | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12da.1 | |- F/ x ph |
|
| 2 | mpteq12da.2 | |- ( ph -> A = C ) |
|
| 3 | mpteq12da.3 | |- ( ( ph /\ x e. A ) -> B = D ) |
|
| 4 | nfv | |- F/ y ph |
|
| 5 | 3 | eqeq2d | |- ( ( ph /\ x e. A ) -> ( y = B <-> y = D ) ) |
| 6 | 5 | pm5.32da | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = D ) ) ) |
| 7 | 2 | eleq2d | |- ( ph -> ( x e. A <-> x e. C ) ) |
| 8 | 7 | anbi1d | |- ( ph -> ( ( x e. A /\ y = D ) <-> ( x e. C /\ y = D ) ) ) |
| 9 | 6 8 | bitrd | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) ) |
| 10 | 1 4 9 | opabbid | |- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } ) |
| 11 | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
|
| 12 | df-mpt | |- ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) } |
|
| 13 | 10 11 12 | 3eqtr4g | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |