This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptct | ⊢ ( 𝐴 ≼ ω → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 3 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
| 5 | ssdomg | ⊢ ( 𝐴 ∈ V → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) ) | |
| 6 | 2 4 5 | mpisyl | ⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) |
| 7 | domtr | ⊢ ( ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ω ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) | |
| 8 | 6 7 | mpancom | ⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 9 | funfn | ⊢ ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 10 | fnct | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) | |
| 11 | 9 10 | sylanb | ⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 12 | 1 8 11 | sylancr | ⊢ ( 𝐴 ≼ ω → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |