This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptct | |- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | |- Fun ( x e. A |-> B ) |
|
| 2 | ctex | |- ( A ~<_ _om -> A e. _V ) |
|
| 3 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 4 | 3 | dmmptss | |- dom ( x e. A |-> B ) C_ A |
| 5 | ssdomg | |- ( A e. _V -> ( dom ( x e. A |-> B ) C_ A -> dom ( x e. A |-> B ) ~<_ A ) ) |
|
| 6 | 2 4 5 | mpisyl | |- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ A ) |
| 7 | domtr | |- ( ( dom ( x e. A |-> B ) ~<_ A /\ A ~<_ _om ) -> dom ( x e. A |-> B ) ~<_ _om ) |
|
| 8 | 6 7 | mpancom | |- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ _om ) |
| 9 | funfn | |- ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) ) |
|
| 10 | fnct | |- ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
|
| 11 | 9 10 | sylanb | |- ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
| 12 | 1 8 11 | sylancr | |- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om ) |