This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brovex.1 | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 𝐶 ) | |
| brovex.2 | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → Rel ( 𝑉 𝑂 𝐸 ) ) | ||
| Assertion | brovex | ⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brovex.1 | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 𝐶 ) | |
| 2 | brovex.2 | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → Rel ( 𝑉 𝑂 𝐸 ) ) | |
| 3 | df-br | ⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) ) | |
| 4 | ne0i | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) → ( 𝑉 𝑂 𝐸 ) ≠ ∅ ) | |
| 5 | 1 | mpondm0 | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ∅ ) |
| 6 | 5 | necon1ai | ⊢ ( ( 𝑉 𝑂 𝐸 ) ≠ ∅ → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 7 | brrelex12 | ⊢ ( ( Rel ( 𝑉 𝑂 𝐸 ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 8 | 2 7 | sylan | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
| 9 | id | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) | |
| 10 | 8 9 | syldan | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 11 | 10 | ex | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 12 | 4 6 11 | 3syl | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 13 | 3 12 | sylbi | ⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 14 | 13 | pm2.43i | ⊢ ( 𝐹 ( 𝑉 𝑂 𝐸 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |