This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition is an operation on complex numbers. Version of ax-addf using maps-to notation, proved from the axioms of set theory and ax-addcl . (Contributed by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpoaddf | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) | |
| 2 | ovex | ⊢ ( 𝑥 + 𝑦 ) ∈ V | |
| 3 | 1 2 | fnmpoi | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) Fn ( ℂ × ℂ ) |
| 4 | simpll | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑥 ∈ ℂ ) | |
| 5 | simplr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑦 ∈ ℂ ) | |
| 6 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 7 | eleq1a | ⊢ ( ( 𝑥 + 𝑦 ) ∈ ℂ → ( 𝑧 = ( 𝑥 + 𝑦 ) → 𝑧 ∈ ℂ ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑧 = ( 𝑥 + 𝑦 ) → 𝑧 ∈ ℂ ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑧 ∈ ℂ ) |
| 10 | 4 5 9 | 3jca | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 11 | 10 | ssoprab2i | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) } |
| 12 | df-mpo | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) } | |
| 13 | dfxp3 | ⊢ ( ( ℂ × ℂ ) × ℂ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) } | |
| 14 | 11 12 13 | 3sstr4i | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ( ( ℂ × ℂ ) × ℂ ) |
| 15 | dff2 | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ( ( ℂ × ℂ ) × ℂ ) ) ) | |
| 16 | 3 14 15 | mpbir2an | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ |