This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Cartesian product of three classes. Compare df-xp . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfxp3 | ⊢ ( ( 𝐴 × 𝐵 ) × 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶 ) ) | |
| 2 | 1 | dfoprab4 | ⊢ { 〈 𝑢 , 𝑧 〉 ∣ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) } |
| 3 | df-xp | ⊢ ( ( 𝐴 × 𝐵 ) × 𝐶 ) = { 〈 𝑢 , 𝑧 〉 ∣ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) } | |
| 4 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) | |
| 5 | 4 | oprabbii | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) } |
| 6 | 2 3 5 | 3eqtr4i | ⊢ ( ( 𝐴 × 𝐵 ) × 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) } |