This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssoprab2i.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| Assertion | ssoprab2i | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssoprab2i.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) → ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 3 | 2 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 4 | 3 | ssopab2i | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } ⊆ { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } |
| 5 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } | |
| 6 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜓 } = { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } | |
| 7 | 4 5 6 | 3sstr4i | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜓 } |