This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping operation with empty domain. In this version of mpo0v , the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpo0 | ⊢ ( 𝑥 ∈ ∅ , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo | ⊢ ( 𝑥 ∈ ∅ , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 2 | df-oprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } | |
| 3 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | simprll | ⊢ ( ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) → 𝑥 ∈ ∅ ) | |
| 5 | 3 4 | mto | ⊢ ¬ ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) |
| 6 | 5 | nex | ⊢ ¬ ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) |
| 7 | 6 | nex | ⊢ ¬ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) |
| 8 | 7 | nex | ⊢ ¬ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) |
| 9 | 8 | abf | ⊢ { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } = ∅ |
| 10 | 1 2 9 | 3eqtri | ⊢ ( 𝑥 ∈ ∅ , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ∅ |