This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping operation with empty domain. In this version of mpo0v , the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpo0 | |- ( x e. (/) , y e. B |-> C ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo | |- ( x e. (/) , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. (/) /\ y e. B ) /\ z = C ) } |
|
| 2 | df-oprab | |- { <. <. x , y >. , z >. | ( ( x e. (/) /\ y e. B ) /\ z = C ) } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) } |
|
| 3 | noel | |- -. x e. (/) |
|
| 4 | simprll | |- ( ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) -> x e. (/) ) |
|
| 5 | 3 4 | mto | |- -. ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) |
| 6 | 5 | nex | |- -. E. z ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) |
| 7 | 6 | nex | |- -. E. y E. z ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) |
| 8 | 7 | nex | |- -. E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) |
| 9 | 8 | abf | |- { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ( ( x e. (/) /\ y e. B ) /\ z = C ) ) } = (/) |
| 10 | 1 2 9 | 3eqtri | |- ( x e. (/) , y e. B |-> C ) = (/) |