This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplvsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | ||
| mplvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mplvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mplvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mplvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| mplvsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| mplvscaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | ||
| Assertion | mplvscaval | ⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplvsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | |
| 3 | mplvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mplvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | mplvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | mplvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | mplvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 8 | mplvsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 9 | mplvscaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | |
| 10 | 1 2 3 4 5 6 7 8 | mplvsca | ⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐹 ) ‘ 𝑌 ) = ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) ) |
| 12 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 13 | 6 12 | rabex2 | ⊢ 𝐷 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 1 15 4 6 8 | mplelf | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 16 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 18 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 19 | 14 7 17 18 | ofc1 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐷 ) → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 20 | 9 19 | mpdan | ⊢ ( 𝜑 → ( ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 | 11 20 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐹 ) ‘ 𝑌 ) = ( 𝑋 · ( 𝐹 ‘ 𝑌 ) ) ) |