This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplbas
Metamath Proof Explorer
Description: Base set of the set of multivariate polynomials. (Contributed by Mario
Carneiro , 7-Jan-2015) (Revised by Mario Carneiro , 2-Oct-2015)
(Revised by AV , 25-Jun-2019)
Ref
Expression
Hypotheses
mplval.p
⊢ P = I mPoly R
mplval.s
⊢ S = I mPwSer R
mplval.b
⊢ B = Base S
mplval.z
⊢ 0 ˙ = 0 R
mplbas.u
⊢ U = Base P
Assertion
mplbas
⊢ U = f ∈ B | finSupp 0 ˙ ⁡ f
Proof
Step
Hyp
Ref
Expression
1
mplval.p
⊢ P = I mPoly R
2
mplval.s
⊢ S = I mPwSer R
3
mplval.b
⊢ B = Base S
4
mplval.z
⊢ 0 ˙ = 0 R
5
mplbas.u
⊢ U = Base P
6
ssrab2
⊢ f ∈ B | finSupp 0 ˙ ⁡ f ⊆ B
7
eqid
⊢ f ∈ B | finSupp 0 ˙ ⁡ f = f ∈ B | finSupp 0 ˙ ⁡ f
8
1 2 3 4 7
mplval
⊢ P = S ↾ 𝑠 f ∈ B | finSupp 0 ˙ ⁡ f
9
8 3
ressbas2
⊢ f ∈ B | finSupp 0 ˙ ⁡ f ⊆ B → f ∈ B | finSupp 0 ˙ ⁡ f = Base P
10
6 9
ax-mp
⊢ f ∈ B | finSupp 0 ˙ ⁡ f = Base P
11
5 10
eqtr4i
⊢ U = f ∈ B | finSupp 0 ˙ ⁡ f