This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplascl0.w | |- W = ( I mPoly R ) |
|
| mplascl0.a | |- A = ( algSc ` W ) |
||
| mplascl0.o | |- O = ( 0g ` R ) |
||
| mplascl0.0 | |- .0. = ( 0g ` W ) |
||
| mplascl0.i | |- ( ph -> I e. V ) |
||
| mplascl0.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mplascl0 | |- ( ph -> ( A ` O ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplascl0.w | |- W = ( I mPoly R ) |
|
| 2 | mplascl0.a | |- A = ( algSc ` W ) |
|
| 3 | mplascl0.o | |- O = ( 0g ` R ) |
|
| 4 | mplascl0.0 | |- .0. = ( 0g ` W ) |
|
| 5 | mplascl0.i | |- ( ph -> I e. V ) |
|
| 6 | mplascl0.r | |- ( ph -> R e. Ring ) |
|
| 7 | 1 5 6 | mplsca | |- ( ph -> R = ( Scalar ` W ) ) |
| 8 | 7 | fveq2d | |- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` W ) ) ) |
| 9 | 3 8 | eqtrid | |- ( ph -> O = ( 0g ` ( Scalar ` W ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( A ` O ) = ( A ` ( 0g ` ( Scalar ` W ) ) ) ) |
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | 1 5 6 | mpllmodd | |- ( ph -> W e. LMod ) |
| 13 | 1 5 6 | mplringd | |- ( ph -> W e. Ring ) |
| 14 | 2 11 12 13 | ascl0 | |- ( ph -> ( A ` ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` W ) ) |
| 15 | 10 14 | eqtrd | |- ( ph -> ( A ` O ) = ( 0g ` W ) ) |
| 16 | 15 4 | eqtr4di | |- ( ph -> ( A ` O ) = .0. ) |