This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 6-May-2015) (Revised by AV, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpfsubrg.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| Assertion | mpfsubrg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( SubRing ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfsubrg.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) | |
| 4 | eqid | ⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) | |
| 5 | eqid | ⊢ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | 2 3 4 5 6 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) | |
| 10 | 8 9 | rhmf | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 11 | ffn | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) | |
| 12 | fnima | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) “ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) | |
| 13 | 7 10 11 12 | 4syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) “ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
| 14 | 1 13 | eqtr4id | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) “ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
| 15 | 4 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
| 16 | 3 | mplring | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring ) |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring ) |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring ) |
| 19 | 8 | subrgid | ⊢ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring → ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∈ ( SubRing ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∈ ( SubRing ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 21 | rhmima | ⊢ ( ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ∧ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∈ ( SubRing ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) “ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ∈ ( SubRing ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) | |
| 22 | 7 20 21 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) “ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ∈ ( SubRing ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 23 | 14 22 | eqeltrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( SubRing ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |