This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | morex.1 | ⊢ 𝐵 ∈ V | |
| morex.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | morex | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | morex.1 | ⊢ 𝐵 ∈ V | |
| 2 | morex.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 4 | exancom | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 6 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 7 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 | mopick | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝜑 → 𝑥 ∈ 𝐴 ) ) | |
| 10 | 8 9 | alrimi | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |
| 11 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 12 | 2 11 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 → 𝑥 ∈ 𝐴 ) ↔ ( 𝜓 → 𝐵 ∈ 𝐴 ) ) ) |
| 13 | 1 12 | spcv | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 14 | 10 13 | syl | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 15 | 5 14 | sylan2b | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 16 | 15 | ancoms | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |