This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | morex.1 | |- B e. _V |
|
| morex.2 | |- ( x = B -> ( ph <-> ps ) ) |
||
| Assertion | morex | |- ( ( E. x e. A ph /\ E* x ph ) -> ( ps -> B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | morex.1 | |- B e. _V |
|
| 2 | morex.2 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 3 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 4 | exancom | |- ( E. x ( x e. A /\ ph ) <-> E. x ( ph /\ x e. A ) ) |
|
| 5 | 3 4 | bitri | |- ( E. x e. A ph <-> E. x ( ph /\ x e. A ) ) |
| 6 | nfmo1 | |- F/ x E* x ph |
|
| 7 | nfe1 | |- F/ x E. x ( ph /\ x e. A ) |
|
| 8 | 6 7 | nfan | |- F/ x ( E* x ph /\ E. x ( ph /\ x e. A ) ) |
| 9 | mopick | |- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ph -> x e. A ) ) |
|
| 10 | 8 9 | alrimi | |- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> A. x ( ph -> x e. A ) ) |
| 11 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 12 | 2 11 | imbi12d | |- ( x = B -> ( ( ph -> x e. A ) <-> ( ps -> B e. A ) ) ) |
| 13 | 1 12 | spcv | |- ( A. x ( ph -> x e. A ) -> ( ps -> B e. A ) ) |
| 14 | 10 13 | syl | |- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ps -> B e. A ) ) |
| 15 | 5 14 | sylan2b | |- ( ( E* x ph /\ E. x e. A ph ) -> ( ps -> B e. A ) ) |
| 16 | 15 | ancoms | |- ( ( E. x e. A ph /\ E* x ph ) -> ( ps -> B e. A ) ) |