This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | mopni3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) |
| 4 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | 1 | mopnss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| 6 | 5 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝑋 ) |
| 7 | 6 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝑋 ) |
| 8 | 4 7 | jca | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ) |
| 9 | ssblex | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 11 | 10 | anassrs | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 12 | sstr | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) | |
| 13 | 12 | expcom | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 14 | 13 | anim2d | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) → ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) ) |
| 15 | 14 | reximdv | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) ) |
| 16 | 11 15 | syl5com | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) ) |
| 17 | 16 | rexlimdva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) ) |
| 18 | 3 17 | mpd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |