This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | mopni | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | elmopn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) ) |
| 3 | 2 | simplbda | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 4 | eleq1 | ⊢ ( 𝑦 = 𝑃 → ( 𝑦 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 5 | 4 | anbi1d | ⊢ ( 𝑦 = 𝑃 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝑃 → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 7 | 6 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑃 ∈ 𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝑃 ∈ 𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 9 | 8 | 3impia | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |