This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997) (Proof shortened by Wolf Lammen, 17-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopick | |- ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
|
| 2 | sp | |- ( A. x ( ph -> x = y ) -> ( ph -> x = y ) ) |
|
| 3 | pm3.45 | |- ( ( ph -> x = y ) -> ( ( ph /\ ps ) -> ( x = y /\ ps ) ) ) |
|
| 4 | 3 | aleximi | |- ( A. x ( ph -> x = y ) -> ( E. x ( ph /\ ps ) -> E. x ( x = y /\ ps ) ) ) |
| 5 | ax12ev2 | |- ( E. x ( x = y /\ ps ) -> ( x = y -> ps ) ) |
|
| 6 | 4 5 | syl6 | |- ( A. x ( ph -> x = y ) -> ( E. x ( ph /\ ps ) -> ( x = y -> ps ) ) ) |
| 7 | 2 6 | syl5d | |- ( A. x ( ph -> x = y ) -> ( E. x ( ph /\ ps ) -> ( ph -> ps ) ) ) |
| 8 | 7 | exlimiv | |- ( E. y A. x ( ph -> x = y ) -> ( E. x ( ph /\ ps ) -> ( ph -> ps ) ) ) |
| 9 | 1 8 | sylbi | |- ( E* x ph -> ( E. x ( ph /\ ps ) -> ( ph -> ps ) ) ) |
| 10 | 9 | imp | |- ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |