This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factor out the proof skeleton of moexex and moexexvw . (Contributed by Wolf Lammen, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moexexlem.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| moexexlem.2 | ⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 | ||
| moexexlem.3 | ⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) | ||
| Assertion | moexexlem | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moexexlem.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | moexexlem.2 | ⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 | |
| 3 | moexexlem.3 | ⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) | |
| 4 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 5 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∃* 𝑦 𝜓 | |
| 6 | 5 3 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 7 | mopick | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) | |
| 8 | 7 | ex | ⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 9 | 8 | com23 | ⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
| 10 | 2 1 9 | alrimd | ⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
| 11 | moim | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) | |
| 12 | 11 | spsd | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 13 | 10 12 | syl6 | ⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 14 | 4 6 13 | exlimd | ⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 15 | 1 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 𝜑 |
| 16 | exsimpl | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) | |
| 17 | 15 16 | exlimi | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
| 18 | nexmo | ⊢ ( ¬ ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) | |
| 19 | 17 18 | nsyl5 | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 20 | 19 | a1d | ⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 21 | 14 20 | pm2.61d1 | ⊢ ( ∃* 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |