This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the monomorphisms of the category c . JFM CAT_1 def. 10. (Contributed by FL, 5-Dec-2007) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mon | ⊢ Mono = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmon | ⊢ Mono | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑐 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | chom | ⊢ Hom | |
| 8 | 4 7 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 9 | vh | ⊢ ℎ | |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 6 | cv | ⊢ 𝑏 |
| 12 | vy | ⊢ 𝑦 | |
| 13 | vf | ⊢ 𝑓 | |
| 14 | 10 | cv | ⊢ 𝑥 |
| 15 | 9 | cv | ⊢ ℎ |
| 16 | 12 | cv | ⊢ 𝑦 |
| 17 | 14 16 15 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 18 | vz | ⊢ 𝑧 | |
| 19 | vg | ⊢ 𝑔 | |
| 20 | 18 | cv | ⊢ 𝑧 |
| 21 | 20 14 15 | co | ⊢ ( 𝑧 ℎ 𝑥 ) |
| 22 | 13 | cv | ⊢ 𝑓 |
| 23 | 20 14 | cop | ⊢ 〈 𝑧 , 𝑥 〉 |
| 24 | cco | ⊢ comp | |
| 25 | 4 24 | cfv | ⊢ ( comp ‘ 𝑐 ) |
| 26 | 23 16 25 | co | ⊢ ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) |
| 27 | 19 | cv | ⊢ 𝑔 |
| 28 | 22 27 26 | co | ⊢ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) |
| 29 | 19 21 28 | cmpt | ⊢ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 30 | 29 | ccnv | ⊢ ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 31 | 30 | wfun | ⊢ Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 32 | 31 18 11 | wral | ⊢ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) |
| 33 | 32 13 17 | crab | ⊢ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } |
| 34 | 10 12 11 11 33 | cmpo | ⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 35 | 9 8 34 | csb | ⊢ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 36 | 6 5 35 | csb | ⊢ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) |
| 37 | 1 2 36 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) |
| 38 | 0 37 | wceq | ⊢ Mono = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) |