This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one function into a singleton, with fewer axioms than eufsn and eufsn2 . See also mofsn2 . (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mofsn | ⊢ ( 𝐵 ∈ 𝑉 → ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) | |
| 2 | 1 | biimpd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } → 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
| 3 | fconst2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑔 : 𝐴 ⟶ { 𝐵 } ↔ 𝑔 = ( 𝐴 × { 𝐵 } ) ) ) | |
| 4 | 3 | biimpd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑔 : 𝐴 ⟶ { 𝐵 } → 𝑔 = ( 𝐴 × { 𝐵 } ) ) ) |
| 5 | eqtr3 | ⊢ ( ( 𝑓 = ( 𝐴 × { 𝐵 } ) ∧ 𝑔 = ( 𝐴 × { 𝐵 } ) ) → 𝑓 = 𝑔 ) | |
| 6 | 5 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑓 = ( 𝐴 × { 𝐵 } ) ∧ 𝑔 = ( 𝐴 × { 𝐵 } ) ) → 𝑓 = 𝑔 ) ) |
| 7 | 2 4 6 | syl2and | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 8 | 7 | alrimivv | ⊢ ( 𝐵 ∈ 𝑉 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 9 | feq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑔 : 𝐴 ⟶ { 𝐵 } ) ) | |
| 10 | 9 | mo4 | ⊢ ( ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 11 | 8 10 | sylibr | ⊢ ( 𝐵 ∈ 𝑉 → ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |