This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one function into a singleton, assuming ax-rep . See eufsn2 for different axiom requirements. If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| eufsn.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | eufsn | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 2 | eufsn.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | mptexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 5 | 3 4 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × { 𝐵 } ) ∈ V ) |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V ) |
| 7 | 1 6 | eufsnlem | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |