This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one function into a singleton, with fewer axioms than eufsn and eufsn2 . See also mofsn2 . (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mofsn | |- ( B e. V -> E* f f : A --> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g | |- ( B e. V -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
|
| 2 | 1 | biimpd | |- ( B e. V -> ( f : A --> { B } -> f = ( A X. { B } ) ) ) |
| 3 | fconst2g | |- ( B e. V -> ( g : A --> { B } <-> g = ( A X. { B } ) ) ) |
|
| 4 | 3 | biimpd | |- ( B e. V -> ( g : A --> { B } -> g = ( A X. { B } ) ) ) |
| 5 | eqtr3 | |- ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) |
|
| 6 | 5 | a1i | |- ( B e. V -> ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) ) |
| 7 | 2 4 6 | syl2and | |- ( B e. V -> ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
| 8 | 7 | alrimivv | |- ( B e. V -> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
| 9 | feq1 | |- ( f = g -> ( f : A --> { B } <-> g : A --> { B } ) ) |
|
| 10 | 9 | mo4 | |- ( E* f f : A --> { B } <-> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
| 11 | 8 10 | sylibr | |- ( B e. V -> E* f f : A --> { B } ) |