This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| eufsn.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | eufsn2 | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 2 | eufsn.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | snex | ⊢ { 𝐵 } ∈ V | |
| 4 | xpexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐵 } ∈ V ) → ( 𝐴 × { 𝐵 } ) ∈ V ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V ) |
| 6 | 1 5 | eufsnlem | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |