This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 2moexv

Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001)

Ref Expression
Assertion 2moexv ( ∃* 𝑥𝑦 𝜑 → ∀ 𝑦 ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 nfe1 𝑦𝑦 𝜑
2 1 nfmov 𝑦 ∃* 𝑥𝑦 𝜑
3 19.8a ( 𝜑 → ∃ 𝑦 𝜑 )
4 3 moimi ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑥 𝜑 )
5 2 4 alrimi ( ∃* 𝑥𝑦 𝜑 → ∀ 𝑦 ∃* 𝑥 𝜑 )