This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factor out the proof skeleton of moexex and moexexvw . (Contributed by Wolf Lammen, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moexexlem.1 | |- F/ y ph |
|
| moexexlem.2 | |- F/ y E* x ph |
||
| moexexlem.3 | |- F/ x E* y E. x ( ph /\ ps ) |
||
| Assertion | moexexlem | |- ( ( E* x ph /\ A. x E* y ps ) -> E* y E. x ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moexexlem.1 | |- F/ y ph |
|
| 2 | moexexlem.2 | |- F/ y E* x ph |
|
| 3 | moexexlem.3 | |- F/ x E* y E. x ( ph /\ ps ) |
|
| 4 | nfmo1 | |- F/ x E* x ph |
|
| 5 | nfa1 | |- F/ x A. x E* y ps |
|
| 6 | 5 3 | nfim | |- F/ x ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) |
| 7 | mopick | |- ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
|
| 8 | 7 | ex | |- ( E* x ph -> ( E. x ( ph /\ ps ) -> ( ph -> ps ) ) ) |
| 9 | 8 | com23 | |- ( E* x ph -> ( ph -> ( E. x ( ph /\ ps ) -> ps ) ) ) |
| 10 | 2 1 9 | alrimd | |- ( E* x ph -> ( ph -> A. y ( E. x ( ph /\ ps ) -> ps ) ) ) |
| 11 | moim | |- ( A. y ( E. x ( ph /\ ps ) -> ps ) -> ( E* y ps -> E* y E. x ( ph /\ ps ) ) ) |
|
| 12 | 11 | spsd | |- ( A. y ( E. x ( ph /\ ps ) -> ps ) -> ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) ) |
| 13 | 10 12 | syl6 | |- ( E* x ph -> ( ph -> ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) ) ) |
| 14 | 4 6 13 | exlimd | |- ( E* x ph -> ( E. x ph -> ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) ) ) |
| 15 | 1 | nfex | |- F/ y E. x ph |
| 16 | exsimpl | |- ( E. x ( ph /\ ps ) -> E. x ph ) |
|
| 17 | 15 16 | exlimi | |- ( E. y E. x ( ph /\ ps ) -> E. x ph ) |
| 18 | nexmo | |- ( -. E. y E. x ( ph /\ ps ) -> E* y E. x ( ph /\ ps ) ) |
|
| 19 | 17 18 | nsyl5 | |- ( -. E. x ph -> E* y E. x ( ph /\ ps ) ) |
| 20 | 19 | a1d | |- ( -. E. x ph -> ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) ) |
| 21 | 14 20 | pm2.61d1 | |- ( E* x ph -> ( A. x E* y ps -> E* y E. x ( ph /\ ps ) ) ) |
| 22 | 21 | imp | |- ( ( E* x ph /\ A. x E* y ps ) -> E* y E. x ( ph /\ ps ) ) |