This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmulmodr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · ( 𝐵 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 5 | 3 4 | modcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℂ ) |
| 7 | 2 6 | mulcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 · ( 𝐵 mod 𝑀 ) ) = ( ( 𝐵 mod 𝑀 ) · 𝐴 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · ( 𝐵 mod 𝑀 ) ) mod 𝑀 ) = ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) ) |
| 9 | modmulmod | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) = ( ( 𝐵 · 𝐴 ) mod 𝑀 ) ) | |
| 10 | 9 | 3com12 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) = ( ( 𝐵 · 𝐴 ) mod 𝑀 ) ) |
| 11 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 12 | 1 11 | anim12ci | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
| 14 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 · 𝐴 ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |
| 17 | 8 10 16 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · ( 𝐵 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |