This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on y , ph can be replaced by the nonfreeness hypothesis |- F/ y ph with essentially the same proof. (Contributed by NM, 10-Apr-2004) Remove dependency on ax-13 . (Revised by Wolf Lammen, 19-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mo4f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| mo4f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | mo4f | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo4f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | mo4f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | 3 | mo3 | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 5 | 1 2 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
| 7 | 6 | imbi1i | ⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 8 | 7 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 9 | 4 8 | bitri | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |