This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of moabex as of 2-Feb-2026. (Contributed by NM, 30-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moabexOLD | ⊢ ( ∃* 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 2 | abss | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ) | |
| 3 | velsn | ⊢ ( 𝑥 ∈ { 𝑦 } ↔ 𝑥 = 𝑦 ) | |
| 4 | 3 | imbi2i | ⊢ ( ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ↔ ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 6 | 2 5 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 7 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 8 | 7 | ssex | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } → { 𝑥 ∣ 𝜑 } ∈ V ) |
| 9 | 6 8 | sylbir | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
| 11 | 1 10 | sylbi | ⊢ ( ∃* 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } ∈ V ) |