This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of moabex as of 2-Feb-2026. (Contributed by NM, 30-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moabexOLD | |- ( E* x ph -> { x | ph } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
|
| 2 | abss | |- ( { x | ph } C_ { y } <-> A. x ( ph -> x e. { y } ) ) |
|
| 3 | velsn | |- ( x e. { y } <-> x = y ) |
|
| 4 | 3 | imbi2i | |- ( ( ph -> x e. { y } ) <-> ( ph -> x = y ) ) |
| 5 | 4 | albii | |- ( A. x ( ph -> x e. { y } ) <-> A. x ( ph -> x = y ) ) |
| 6 | 2 5 | bitri | |- ( { x | ph } C_ { y } <-> A. x ( ph -> x = y ) ) |
| 7 | vsnex | |- { y } e. _V |
|
| 8 | 7 | ssex | |- ( { x | ph } C_ { y } -> { x | ph } e. _V ) |
| 9 | 6 8 | sylbir | |- ( A. x ( ph -> x = y ) -> { x | ph } e. _V ) |
| 10 | 9 | exlimiv | |- ( E. y A. x ( ph -> x = y ) -> { x | ph } e. _V ) |
| 11 | 1 10 | sylbi | |- ( E* x ph -> { x | ph } e. _V ) |