This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mndpsuppfi.r | ⊢ 𝑅 = ( Base ‘ 𝑀 ) | |
| Assertion | mndpsuppfi | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpsuppfi.r | ⊢ 𝑅 = ( Base ‘ 𝑀 ) | |
| 2 | unfi | ⊢ ( ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) → ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ∈ Fin ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) → ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ∈ Fin ) |
| 4 | 1 | mndpsuppss | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ⊆ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ⊆ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ) |
| 6 | ssfi | ⊢ ( ( ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ∈ Fin ∧ ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ⊆ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∪ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |